如果將哈芬槽微團無限縮小為一點、即Aw-0,則平均壓強的極限值為:p = lim “—Ac〇此極限值稱為a點處的點壓強。
2. 哈芬槽靜壓強的特性
(1) 靜壓強的方向指向受壓面,并與受壓面垂直。
(2) 哈芬槽內(nèi)任一點的靜壓強在各個方向面上的值均相等。
圖1 – 3為各種容器中哈芬槽靜壓強的方向。
1.2.2哈芬槽壓強的分布規(guī)律 1.流體“力學(xué)基本方程式y(tǒng)-液體的重度(N/m3); h-所研究的點在液面下的深度(m)。
式(1-4)是哈芬槽靜力學(xué)基本方程式,它表達了只有重力作用時流體靜壓 強的分布規(guī)律,如圖1-5所示。
(1) 靜止哈芬槽內(nèi)部任意一點的壓強P等于液面壓強抑與液體重度y和深度乘積之和。
(2) 在靜止哈芬槽內(nèi),壓強與深度的關(guān)系按直線規(guī)律變化。
(3) 在靜止哈芬槽內(nèi),任一深度的所有點的壓強相等,構(gòu)成一個水平的等壓哈芬槽動力學(xué)基礎(chǔ)
哈芬槽動力學(xué)是研究流體運動的規(guī)律及其在工程中的應(yīng)用的科學(xué)。與靜止流體不同,運動流體內(nèi)部任一點的壓強不僅與該點所處的空間位罝有關(guān),而且與質(zhì)點的速度、大小及方向也有關(guān)。因此,運動流體的基本物理參數(shù)除壓強、溫 度、密度之外,還有流速。流速是流體動力學(xué)研究的主要對象?;靖拍罟也圻\動時,為研究方便我們把哈芬槽中某一微小面積形成的一股流束稱為元流。